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Oocytes grow and develop within several distinct ovarian follicles during the fetal and postnatal periods, 
and they ovulate in each estrous or menstrual cycle from ovarian follicles after puberty. Ovarian follicles 
start to form when oogonia are surrounded by a single layer of pregranulosa follicular cells and are called 
primordial follicles. Primordial follicles grow and develop into further stages upon activation. The growth 
and development of primordial follicles to pre-ovulatory follicles in mammals lasts several months. 
Oocytes acquire developmental competence during the preantral and antral ovarian follicle stages. The 
final maturation stage of ovarian follicles occurs during estrous or menstrual cycles. Changes occur in the 
cytoplasts, nuclei, and the surrounding follicular cells of oocytes for completion of meiotic maturation, 
fertilization, and further embryo development either in vivo or in vitro. The cytoplasmic maturation 
of oocytes helps to surpass the maternal zygotic block and progress for further embryo development. 
Hence, the cytoplasts of enucleated germinal vesicle (GV) or mature (metaphase II; MII) oocytes control 
development after embryonic/somatic nuclear transfer. Therefore, this review was conducted to collect 
and consolidate the current knowledge of cytoplast and nuclear material effects on maturation of intact 
and reconstructed oocytes and further developmental competence of embryos in vivo and in vitro and their 
importance for nucleus reprogramming and fertility.

INTRODUCTION

Oocytes grow and develop during fetal and postnatal 
periods within several distinct ovarian follicles, 

and they ovulate from the ovarian follicles after puberty 
in each estrous or menstrual cycle. The formation 
of ovarian follicle begins with primordial follicles, 
where oogonia are surrounded by pregranulosa cells 
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(O’Connell and Pepling, 2021; Mohammed et al., 2022). 
The growth and development of primordial follicles occur 
upon activation of pregranulosa cells to reach the preantral 
and antral follicle stages (Zhang et al., 2014; Wu et al., 
2021) (Fig. 1). 

The changes that occur during follicle development 
include granulosa cell proliferation, oocyte growth, and 
theca cell differentiation (Richards and Pangas, 2010). 
Preantral follicle growth is gonadotropin-independent, 
whereas antral follicle growth is gonadotropin-dependent 
(Chakravarthi et al., 2021). Tang et al. (2012) investigated 
the role of follicle stimulating hormone (FSH) in 
combination with growth and differentiation factor-9 or 
basic fibroblast growth factor on the survival, activation, 
and growth of bovine primordial follicles, which improved 
after long-term culture of ovarian tissue.

Most of the information on ovarian follicle growth 
and development stems from studies on ruminants, swine, 
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Fig. 1. Ovarian follicle structures upon fallopian tube 
ligation in mice; preantral follicles (A), antral follicles (B) 
and corpora lutea (C) structures. N.B. Differences in sizes 
of oocytes and the layers of surrounding cells inside the 
follicles.

  

A 

C 

B a
n
d 

a
n

a
n
d 

Fig. 2. The structures of ovarian follicle in control (A) 
and ovarian transplanted tissues in rats (B, C). The images 
show preantral follicles (A), antral follicles (B), and 
corpora lutea (C).

rodent species, and humans (Senosy et al., 2017; Bunel 
et al., 2020; Baerwald and Pierson, 2020; Pournaghi et 
al., 2021; Ko et al., 2021). Several factors such as species 
(Gordon, 2003; Patton et al., 2021), nutrition and feed 
additives (Mohammed and Attaai, 2011; Fernandes et 
al., 2016; Senosy et al., 2017, 2018; Mohammed 2018, 
2019; Liang et al., 2012; Moulavi and Hosseini, 2019; 
Gutiérrez-Añez et al., 2021; Saini et al., 2022; Al-Mufarji 
et al., 2022; Al-Masruri et al., 2022a, b) and males (Taira 
et al., 2022) have effect on ovarian follicle growth and 
development. In addition, recently adapted techniques 
of ovarian synchronization, ovarian superovulation, and 

ovarian transplantation for dysfunction treatment and the 
maximizing of reproduction are known to change ovarian 
follicle growth and the development of the oocytes they 
contain (Gordon, 2003; Ata and Telek, 2021) (Fig. 2). 
Superovulation protocol via gonadotrophin stimulation 
might result in abnormal changes in cytoplast and nucleus 
structure, lower the concentration of estradiol hormone, 
and disrupt cumulus cell mRNA (Algriany et al., 2007; von 
Wolff et al., 2022). Moreover, Kanitz et al. (2002) found 
that high doses of FSH could lead to defects in ovulation at 
the level of the pituitary gland and ovaries. Consequently, 
the transfer of GV nuclei, nucleoli, or cytoplasts of highly 
competent oocytes to abnormal oocytes through adapted 
techniques may treat abnormalities in oocytes.

Oocytes acquire developmental competence during 
ovarian follicle development through changes in the 
nucleus and cytoplast. Therefore, the recipient cytoplast 
and donor nucleus stages of artificial gametes affect 
developmental competence. Such artificial gametes 
may be used for different purposes, such as studying of 
embryonic/somatic nucleus reprogramming in recipient 
cytoplasts, production of cloned and transgenic animals, 
and treatment of infertility (Campbell et al., 1996; Wilmut 
et al., 1997; Mohammed et al., 2019; Singh et al., 2022; 
Dolma et al., 2022). The roles of cytoplasmic maturation 
and nuclear progression to the MII stage of intact and 
reconstructed oocytes in controlling developmental 
competence of oocytes to embryos are compiled and 
discussed in this review.

ASPIRATION AND DEVELOPMENTAL 
COMPETENCE OF CUMULUS-ENCLOSED 

GERMINAL VESICLE OOCYTE

Cumulus-enclosed germinal vesicle oocytes (COCs) 
can be aspirated or picked-up (OPU) from different 
animals, humans, or slaughterhouse ovaries (Mohammed 
et al., 2005; Jin et al., 2016; Ongaratto et al., 2020; 
Girsh, 2021; Al-Zeidi et al., 2022a, b) for in vitro embryo 
production. The OPU approach has been applied in humans 
to overcome abnormalities such as hidden ovaries, severe 
tubal diseases, or multiple adhesions with a success rate 
lower than 50%. Oocytes are picked up from genetically 
superior animals before puberty, early gestation, and early 
postpartum through laparoscopic and ultrasonic methods 
to shorten the interval between generations and increase 
animal production (Ongaratto et al., 2020; Furukawa 
et al., 2021). COCs have been used for in vitro embryo 
production through oocyte maturation (IVM), fertilization 
or activation (IVF), and culture (IVC) of different animal 
species and humans. The development of COCs to 
blastocyst stage does not exceed 30-40% (Mohammed 
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et al., 2005; Somfai et al., 2012). Several factors, such 
as ovary storage time, wave of estrous cycle, follicle 
diameter, oocyte quality, incubation time, maturation 
environment, nutrition and feed additives, and male effect, 
affect the developmental competence of aspirated oocytes 
to embryos (Schwartz et al., 1998; Demyda-Peyrás et al., 
2013; Senosy et al., 2017, 2018; Taira et al., 2022) (Table 
I).

The development of oocytes to embryos increases 
when slaughterhouse ovaries are exposed to warm 
conditions for a few h before oocyte aspiration. Storage 
of ovaries at 30 °C for 3-4 h after slaughter has led to an 

increase in the number of oocytes developed to embryos. 
It was suggested that a storage period of 4 h resulted in the 
formation of an environment within the 3-8 mm follicles, 
similar to that which occurs in preovulatory follicles. In 
our study, changes in follicular fluid (FF) composition at 
times of zero, 4, and 8 h in goat ovaries were investigated. 
The most notable changes in FF composition were the 
concentrations of glucose, cholesterol, and triglycerides, 
which are sources of energy for oocytes. This might 
partially explain the increase in the developmental 
competence of oocytes collected from the ovaries 4 h after 
slaughter but decrease thereafter.

Table I. Factors affecting developmental competence of aspirated oocytes in vitro.

Ovaries Treatments Effects References
Slaughter-
house
ovaries 

Storage the ovaries 30 °C 
for 3-4 h

Increase developmental competence of 
oocytes to embryos

Luu et al., 2011

Defined and undefined 
media

Variable effects on oocyte maturation and 
embryo development

Mohammed et al., 2005; Madkour et al., 2016; 
Spacek and Carnevale, 2018; Abdoon et al., 
2018

IGF-1 and FF Variable effects on oocyte maturation and 
embryo development

Oberlender et al., 2013

Fetal calf serum Increase developmental competence of 
oocytes to embryos

Mohammed et al., 2005; Moulavi and Hos-
seini, 2019

Follicular fluid Variable effects on oocyte maturation 
and embryo development depending 
on follicle sizes collected and added 
percentage to the maturation medium

Mohammed et al., 2005; Sinclair et al., 2008

Co-culture cumulus and 
oviduct cells

Increase developmental competence of 
oocytes to embryos

Lee et al., 2018

Cumulus cells surrounding 
the oocytes

Increase developmental competence of 
oocytes to embryos

Mohammed 2006; Mohammed et al., 2005, 
2008, 2010, 2019; Al-Zeidi et al., 2022

Hormone Increase developmental competence of 
oocytes to embryos

Moulavi and Hosseini, 2019

Follicule size Variable effects where the increase of 
follicle sizes enhance developmental 
competence of oocytes to embryos

Shabankareh et al., 2014; Gordon, 2003; May-
linda et al., 2018

Live 
organisms

Follicule size Variable effects on oocyte maturation and 
embryo development where the higher 
follicle size the higher developmental 
competence of oocyte to embryos

Hasler et al., 1998; Maylinda et al., 2018; Raj 
et al., 2018

Follicular wave Variable effects on oocyte maturation and 
embryo development

Gordon et al., 2003; Cavalieri et al., 2018; 
Baby and Bartlewski, 2011

Follicular and luteal stages Variable effects on oocyte maturation and 
embryo development

Gordon et al., 2003

Nutrition Variable effects on oocyte maturation and 
embryo development

Gordon et al., 2003

Feed additives Variable effects on oocyte maturation and 
embryo development

Senosy et al., 2017, 2018; Mohammed and 
Al-Hozab, 2018

Cytoplasmic and Nuclear Maturation of Intact and Reconstructed Oocytes Controlling 3
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The more cumulus cells surround the oocytes 
and homogeneity of the oocytes cytoplasts, the greater 
the developmental competence of oocytes to embryos 
(Mohammed et al., 2005). In addition, the male effect 
stimulation of super ovulated females during the last phase 
of the FSH regimen increase the number and diameter of 
large follicles, in addition to the number of corpora lutea 
and viable embryos, compared to unstimulated ewes (Taira 
et al., 2022). Therefore, these factors should be taken into 
consideration for enhancement of oocyte quality, oocyte 
maturation, fertilization, and development of embryos.

OOCYTE QUALITY AND GENE 
EXPRESSION

Oocyte quality is critical for maturation, fertilization, 
and embryonic and fetal development. The higher the 
oocyte quality, the higher the developmental competence 
of the resulting embryo and fetus. Oocytes are graded 
morphologically according to the cumulus cells surrounding 
the oocytes, diameter of the oocyte, and homogeneity of 
the cytoplasts (Mohammed et al., 2005; Lopes et al., 2010; 
Al-Zeidi et al., 2022). Castaneda et al. (2013) found that 
both active mitochondria and lipid content were correlated 
with oocyte diameter. In addition, brilliant cresyl blue 
staining (BCB) were used to select developmentally 
competent GV oocytes of different species (Opiela and 
Kątska-Książkiewicz, 2013; Jewgenow et al., 2019; 
Mohammed and Al-Hozab, 2020). Bovine GV oocytes 
stained with +BCB had a relatively higher developmental 
competence than non-stained BCB oocytes. A previous 
study investigated the relationship between BCB staining, 
lipid content, and active mitochondria. They concluded 
that higher lipid content of bovine oocytes stained with 
BCB might provide higher developmental competence. In 
addition, Sinclair et al. (2008) investigated the amino and 
fatty acid content in the follicular fluid of bovine follicles 
as a predictor of embryo development. They found that two 
amino acids (alanine and glycine) had the highest value for 
predicting early embryonic development, and this might 
serve as a useful tool in measuring COCs quality.

In recent years, transcriptome and proteome have 
been substantially explored as biomarkers for oocyte 
quality owing to the progression of the new technologies. 
The approach is an invaluable tool for clinical practice 
in assisted reproductive technologies, obstetrics, and 
gynecology (Li et al., 2019). The expression patterns of 
glucose metabolism genes (G6PDH, LDH, and PDH) were 
investigated in buffalo  oocytes matured under different 
glucose concentrations (Kumar et al., 2013). The pattern 
of G6PDH expression during oocyte maturation and early 
embryonic development is predictive of oocyte quality 

and developmental competence of embryos. However, Liu 
et al. (2021) found in good prognosis IVF patients that 
mitochondrial DNA copy number of cumulus cells is not 
linked to embryo implantation. Therefore, further studies 
on gene expression are required to determine the relation 
between oocyte quality and further development of oocytes 
into preimplantation and post implantation embryo stages. 

NUCLEAR AND CYTOPLASMIC 
MATURATION OF INTACT OOCYTES

Oocytes require several months to acquire 
developmental competence before maturation (Blondin et 
al., 1997; Hashimoto et al., 2002). Small follicles contain 
inhibiting maturation substances within the follicles, which 
disappear in the preovulatory follicle simultaneously with 
the LH surge. Therefore, oocytes resume the first meiotic 
division to the metaphase II (MII) stage in vivo after the 
LH surge and in vitro when they are removed from antral 
follicles and cultured under favorable in vitro conditions 
(38.5 °C, 90% humidity, 5.0% CO2).

Oocyte maturation in vitro was described nearly 85 
years ago when rabbit and human oocytes were aspirated 
from follicles and cultured in a favorable medium (Pincus 
and Enzmann, 1935). It has been indicated that the 
developmental competence of in-vitro matured oocytes 
is lower than that of in-vivo matured oocytes (Leibfried-
Rutledge et al., 1987; Margalit et al., 2019; Sakaguchi and 
Nagano, 2020) due to insufficient cytoplasmic maturity 
(Blondin et al., 1997). The longer the maturation time 
of oocytes, the lower the developmental competence of 
the resulting embryos, as indicated in swine and camel 
oocytes, compared to oocytes of other species (Wani and 
Hong, 2020; Mohammed and Al-Hozab, 2020; Li et al., 
2022).

Fig. 3. The germinal vesicle karyoplasts placed under the 
zona pellucida of enucleated germinal vesicle oocytes (A) 
and fused with cytoplasts (B).

The morphological maturation stages of intact GV or 
reconstructed GV oocytes (Figs. 3 and 4) include oocyte 
nuclear and cytoplasmic maturation, in addition to cumulus 
expansion of the surrounding cells (Fig. 4). The germinal 

A.A. Mohammed et al.
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vesicle of denuded oocytes is visible in rodent, rabbit, 
and human oocytes, whereas it is not visible in ruminant 
oocytes because of the presence of lipid droplets in the 
cytoplasm. Gordon (2003) described the chronology of 
events during bovine oocyte maturation as inductive and 
synthetic phases. The nuclear changes included germinal 
vesicle breakdown (GVBD), which occurred at 2-3 h in 
rodent oocytes and 6-8 h in ruminant oocytes, respectively. 
Rodent oocytes reached the MI stage at 11-13 h and MII 
stage at 15-17 h. The ruminant oocytes reached the MI 
stage at 15-21 h and MII stage at 24 h (Gordon, 2003; 
Virant-Klun et al., 2018; Mohammed et al., 2008, 2010, 
2019).
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Fig. 4. Oocyte maturation; denuded germinal vesicle 
oocyte (A), germinal vesicle breakdown (B), cumulus 
expansion (C), polar body extrusion (D), fluorescence 
staining of matured oocyte (E), hematoxylin stain of 
matured oocyte (F).

Follicle size, follicular wave during the estrous 
cycle, follicular and luteal stage of estrous, species and 
age (Gordon, 2003; Patton et al., 2021), nutrition and 
feed additives (Cavalieri et al., 2018; Mohammed, 2018, 
2019; Mohammed and Al-Hozab, 2020; Liang et al., 
2012; Moulavi and Hosseini, 2019; Pournaghi et al., 2021; 
Gutiérrez-Añez et al., 2021; Saini et al., 2022), and male 
effects (Taira et al., 2022) were found to affect oocyte 
maturation. In addition, super stimulation of ovarian 
follicles via gonadotropin injections resulted in changes in 
small, medium, and large follicles according to the number 
and dose of gonadotropin injections and side of the ovary 
(Abdelnaby et al., 2021). FSH stimulates transcription and 
translation in ovarian granulosa cells, which are essential 
for female reproductive endocrine regulation (Dai et al., 
2021). The timing of fully grown germinal vesicle oocytes 
to reach the MII stage in vitro for different species and 
the various approaches for improving maturation are 
presented in Table II (Gordon, 2003; Baruffi et al., 2004; 

Somfai et al., 2012). Enrichment of maturation media with 
cumulus cells, hormones, growth factors, and other factors 
improves oocyte maturation and embryo development.

CYTOPLASMIC MATURATION AND 
NUCLEAR REPROGRAMMING OF 
RECONSTRUCTED OOCYTES AND 
DEVELOPMENTAL COMPETENCE

Germinal vesicle nucleus, nucleolar, or cytoplasmic 
dysfunction of oocytes may be associated with infertility 
in animal and human oocytes (Fulka et al., 2004; Miao 
et al., 2019; Wang et al., 2022). Oocyte GV nuclei, 
nucleoli, MII spindles, and cytoplast transfer techniques 
have been used for the treatment of oocyte dysfunction 
due to cytoplasmic, nuclear, or nucleolar reasons or to 
increase their developmental competence (Fulka et al., 
2004; Hoseini et al., 2016; Benc et al., 2018). Hoseini 
et al. (2016) concluded that cytoplast transfer technique 
is not effective for cytoplasmic maturity of recipient GV 
oocytes; however, the presence of cumulus cells during 
oocyte maturation or GV nucleus or nucleolus transfer 
is effective in increasing the developmental competence 
of the resulting embryos. Chang et al. (2005) found that 
the developmental incompetency of denuded mouse GV 
oocytes matured in vitro is ooplasmic in nature and is 
associated with aberrant Oct-4 expression. 

One of the fundamental factors for successful 
assisted reproductive technologies (ART) in reconstructed 
oocytes is the interaction between the recipient cytoplast 
and donor nucleus (Polanski et al., 2005; Mohammed, 
2006; Mohammed et al., 2008, 2010; Wani et al., 
2018). Oocytes at stages GV, ProMI, MI, and MII were 
enucleated to obtain recipient cytoplasts. The obtained 
cytoplasts can be used in cell biology for basic research 
and reprogramming of the introduced germ, embryonic, 
or somatic nuclei during transfer (Grabarek et al., 2004; 
Polanski et al., 2005; Mohammed et al., 2008, 2010, 
2019). Such approaches might solve the problem of low 
developmental competence of oocytes from prepubertal 
or advanced maternal age (Hassold and Chiu, 2003) due 
to developmental incompetency of ooplasmic or nuclear 
nature (Bao et al., 2003). The following questions arise: 
Does the transfer of nuclei from non-growing, growing, 
or aging GV oocytes into fully grown GV cytoplasts solve 
infertility problem? Does the transfer of MII spindles to 
competent mature MII cytoplasts rescue infertility in 
animals and humans? Does the transfer of competent 
nucleoli from donor fully grown GV oocytes to recipient 
GV oocytes containing abnormal nucleoli rescues 
infertility?
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Table II. Duration of oocyte maturation in vitro from germinal vesicle to metaphase II stage using different 
supplements to maturation media in different animal species and human.

Species Duration, h Treatments References
Rodents 17 Cumulus cells

Cumulus cells
Cumulus cells
Perfluorooctane
CRH and ACTH

Grabarek et al., 2004 
Mohammed 2006, 2008 
Mohammed et al., 2006, 2008, 2010
Wei et al., 2021
Gong et al., 2021

Goat 24 Cysteamine, leukemia inhibitory factor, and Y27632
Physiological oocyte maturation
Leptin

An et al., 2018
Suresh et al., 2021
de Senna Costa et al., 2022

Sheep 24 Resveratrol
Oxygen tension
C-type natriuretic peptide

Zabihi et al., 2020
Sánchez-Ajofrín et al., 2020
Zhang et al., 2018

Cattle 24 FF and FCS
Retinoic acid
Lycopene

Mohammed et al., 2005 
Borges et al., 2021
Residiwati et al., 2021

Buffalo 24 -
Brain-derived neurotrophic factor
Retinoic acid

Marin et al., 2019
Zhao et al., 2019 
Gad et al., 2018

Rabbit 24 Gonadotropin-releasing hormone
-

Yoshimura et al., 1991
Arias-Álvarez et al., 2017

Human 24 -
-
Coenzyme Q10
A fertilin-derived peptide

Chian et al., 2004
Baruffi et al., 2004
Ma et al., 2020
Sallem et al., 2022

Camel 42-48 -
Macromolecule
Roscovitine

Wani et al., 2018
Moulavi and Hosseini, 2019 
Wani and Hong 2018; 2020

Pig 48 Dihydroartemisinin
Zearalenone
CRH and ACTH
Allicin

Luo et al., 2018
Wang et al., 2022
Gong et al., 2021
Li et al., 2022

 Therefore, the techniques of enucleation of denuded 
GV, cumulus-enclosed GV, and enucleolation of GV 
oocytes were adapted for such studies (Grabarek et al., 
2004; Mohammed et al., 2008, 2010, 2019). Our unique 
enucleation and enucleolation techniques (Figs. 5 and 6) 
of denuded and cumulus-enclosed GV oocytes enabled us 
to confirm the role of cumulus cells, nuclear material, and 
nucleoli on oocyte maturation and embryo development. 
Complete enucleation of denuded GV oocytes removes 
the entire GV nucleus. Therefore, the resulting cytoplast 
does not contain any GV components or cumulus effects. 
Selective enucleation of denuded GVs involves the 
removal of nuclear membrane, leaving the nucleolus 
and nuclear sap in the cytoplast; however, selective 
enucleation of cumulus-enclosed GVs leaves the effect of 
nucleolus, nuclear sap, and cumulus cells in the cytoplast 
(Fig. 5). Therefore, the aforementioned techniques 

and enucleolation confirmed the role of cumulus cells, 
nuclear material, and nucleolus in oocyte maturation and 
developmental competence. 

Our results of selective enucleation of GV oocytes 
yielded GV cytoplasts in similar quantity as did complete 
enucleation of GV oocytes (Mohammed, 2006; Mohammed 
et al., 2008, 2010). Therefore, the aforementioned 
techniques and enucleolation confirmed the role of cumulus 
cells, nuclear material, and nucleolus in oocyte maturation 
and further developmental competence of embryos. Our 
results indicated that GVsel cytoplasts provided proper 
timing of maturation after reconstruction with GV, contrary 
to GV cytoplasts, which accelerated timing of maturation. 
However, this did not improve haploidization, as measured 
with abnormal nuclear morphology. Abnormal acceleration 
of maturation cannot be rescued by any particular cell 
cycle stage or developmental stage of blastomeres 1/2, 1/4 
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or 1/8 used as nuclear donor. Highest maturation efficiency 
of GV cytoplasts together with their least disturbance from 
abnormal meiosis were provided by G2 donor blastomere 
nuclei (Mohammed, 2006; Mohammed et al., 2008, 2010, 
2019, 2022). 

Fig. 5. Obtaining types of recipient germinal vesicle 
cytoplasts, donor nuclei transfer and further meiotic 
maturation and developmental competence; GV germinal 
vesicle nucleus of fully-grown oocyte, G1 gap 1 stage, S 
S-phase stage, G2 gap 2 stage.

 A  B  

Fig. 6. Enucleolation of fully grown germinal vesicle oocyte 
(A and B) the nucleolus-free germinal vesicles are visible 
(red arrows) in the cytoplasm. In the enucleolation pipettes, 
the nucleolus of GV oocyte undergoing enucleolation 
(A, yellow arrow) and several nucleoli of previously 
enucleolated GV oocytes (B yellow arrows) are visible.

The nucleolus and cumulus cells were confirmed 
to be dispensable for GV oocyte maturation, but the 
resulting embryos are blocked at the two-cell stage with 

an anucleolated nucleus (Fig. 7). Therefore, selective 
enucleation as countered by enucleolation revealed 
the influence of GV contents on pronuclear formation. 
Furthermore, complete enucleation of denuded GV oocytes 
followed by G2/M embryonic or fetal fibroblast nuclear 
transfer indicate maturation with abnormalities such as 
acceleration of polar body extrusion, large polar body, 
and misalignment of chromosomes over the MII spindle, 
in addition to blocked embryo development at the one-
cell stage after activation or fertilization. Surprisingly, 
no nucleoli were observed in the developed embryos. In 
addition, upon fertilization, one pronucleus was formed in 
the cytoplast, and was expected to be somatic, whereas the 
male pronucleus was not formed and was found as scattered 
chromosomes in the cytoplast (Fig. 8). This expectation is 
based on the fact that the pronucleus close to the polar body 
is somatic and the pronucleus farthest from the polar body 
is spermatic. This was confirmed through maturation of 
GV cytoplasts for 17 h followed by fertilization. Fertilizing 
sperm in the cytoplasm remained in a highly condensed 
head form (Mohammed et al., 2008, 2010, 2019, 2022).

 A  B  

Fig. 7. Pronuclei (arrow) in the zygote (A) and nuclei 
(arrow) in 2-cell embryo (B) obtained from enucleolated 
and fertilized fully grown germinal vesicle oocytes. 
Nucleoli are not visible both in pronuclei and in blastomere 
nuclei. In the zygote the second pronucleus is out of focus.

 A  B C   

Fig. 8. Pronuclear morphology in GV (A) and GVsel 
cytoplasts (B and C) reconstructed with embryonic/
somatic nuclei and fertilized after in vitro maturation (light 
microscope, DIC). (A) One pronucleus formed of somatic 
origin without nucleoli (arrow) and extruded large PB; (B) 
Two pronuclei were formed of somatic and sperm origin 
and both contained nucleoli; (C) stained two pronuclei 
were formed of somatic (green arrow) and sperm (red 
arrow) origin and both contained nucleoli.
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Fig. 9. Effects of nuclear material and cumulus cells on 
developmental competence of cytoplasts reconstructed 
with ½-blastomere nuclei. GV removal the whole germinal 
vesicle of GV oocyte, GVsel removal nuclear material 
and membrane leaving nucleolus and nuclear sap in the 
cytoplast of denuded GV oocytes, GVCsel removal nuclear 
material and membrane leaving nucleolus and nuclear sap 
in the cytoplast of culumus enclosed GV oocytes.

 A  B  

Fig. 10. Hatching blastocysts developed from GVCsel 
cytoplasts reconstructed with 1/2-blastomere nuclei at 
G2/M phase (A) two hatching blastocysts under light 
microscope (DIC) and (B) one hatching blastocyst after 
Hoechst staining (fluorescence microscope).

Upon selective enucleation of denuded GV oocytes, 
reconstructed with G2/M embryonic nucleus, followed 
by maturation and fertilization, both pronuclei were 
formed in addition to further developmental competence 
to morula/blastocyst (Fig. 9 and 10). Although activated 
reconstructed GVsel cytoplasts were also cleaved and few 
of them developed to the blastocyst stage the frequency 
of cleavage to the 4-cell stage and blastocyst formation 
was evidently lower than those of reconstructed GVCsel 
cytoplasts (38.5% vs 71.4% and 7.7% and 23.8%, 
respectively). Also, the mean cell number in the obtained 
blastocysts was slightly higher in blastocysts derived 
from activated reconstructed GVCsel cytoplasts. What is 
deserved to observe is the absence or lower cells of inner 
cell mass in the cloned developed blastocysts over somatic 
or embryonic nuclear transfer to GVCsel cytoplasts 
compared to normal developed blastocysts. The number 

and quality of inner cell mass is the most important 
character of the developed blastocysts to give birth. Zhu et 
al. (2022) reported that the poor morphology of inner cell 
mass (grade C) of the developed embryos increases birth 
weight and large for gestational age compared to inner cell 
mass of grade A. in addition, Plana-Carmona et al. (2022) 
confirmed that the trophectoderm acts as a niche for the 
inner cell mass through C/EBPα-regulated IL-6 signaling. 
Therefore, further studies are required for investigating the 
reasons of absence or poor quality inner cell mass of the 
developed blastocysts from GV cytoplasts after embryonic 
nuclear transfer. 

This very interesting technique of enucleation 
denuded or cumulus-enclosed GV oocytes could be applied 
with visible GV nucleus as in human, rodent and rabbit 
oocytes. In ruminant GV oocytes, ultra-centrifugation to 
15,000 rpm is required for visualization of GV nucleus 
due to lipid droplets and the cumulus is stripped off during 
such centrifugation. In addition, the GV nucleus could be 
visible approximately in two third of the centrifuged GV 
oocytes.

Concerning the cell cycle stage of the introduced donor 
nuclei, our results and others indicate that G0/G1 cells or 
nuclei could be transferred to metaphase II cytoplasts, 
whereas G2/M cells or nuclei could be transferred 
to germinal vesicle cytoplasts (Wilmut et al., 1997; 
Mohammed et al., 2008, 2010, 2019, 2022). Donor cells 
or nuclei introduced in the S phase to the germinal vesicle 
cytoplast result in abnormalities in oocyte maturation and 
block further developmental competence of embryos. To 
the best of our knowledge, embryonic or somatic nuclear 
transfer to metaphase II cytoplasts results in deliveries 
with low efficiency (Campbell et al., 1996; Wani et al., 
2018), whereas with embryonic or somatic nuclear transfer 
to GVCsel cytoplast, the embryonic development reached 
to the hatched blastocyst stage (Mohammed et al., 2008, 
2010). Upon morula and blastocysts transferred to the 
uterine of surrogate mothers, no delivery was confirmed in 
mice (Mohammed unpublished data).

Our complete and selective enucleation of GV 
yielded GV cytoplasts with high efficiency (Wilmut et al., 
1997; Mohammed et al., 2008, 2010, 2019, 2022). The 
sole success of the recipient germinal vesicle cytoplast is 
the meiotic maturation of germinal vesicle karyoplasts; 
germ cells; primary or secondary spermatogonia (Ogura et 
al., 1998; Zhang et al., 2015). Germinal vesicle recipient 
cytoplasts are required in basic research for investigations 
of cell biology and donor cell reprogramming. Further 
studies are still required for improvement the outcomes of 
manipulation germinal vesicle oocytes in different animal 
species and human as well. 
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CONCLUSIONS

Oocytes grow and develop during fetal and postnatal 
periods within several distinct ovarian follicles, and they 
ovulate in each estrous or menstrual cycle from ovarian 
follicles after puberty. Trials were unsuccessful when germ 
cells were used for in vitro embryo production during the 
fetal period; however, they succeeded when germ cells 
were used of the prepubertal and post pubertal periods for 
in vitro embryo production. The higher the follicle diameter 
and oocyte quality, the higher the maturation, fertilization, 
and developmental competence of the embryo. Estrous 
or menstrual cycle synchronization and superovulation 
protocols for ovarian follicles have been used in different 
species for embryo transfer. In addition, ovarian tissue 
transplantation has been adopted for the treatment of 
infertility and conservation of species. Furthermore, 
defects in oocytes can be repaired via the nucleolus, 
germinal vesicle, and spindle transfer to the recipient 
oocyte or cytoplast. Primary and secondary spermatocytes 
and spermatids have been successfully used to fertilize 
GV and MII oocytes. Furthermore, germinal vesicle, 
embryonic, and somatic cells at different cell cycle stages 
(G0, S, and G/M stages) have been transferred to different 
cytoplasts (GV, ProMI, MI, and MII stages) with variable 
results. Assisted reproductive techniques (ART) are used 
to treat infertility, save endangered species, enhance meat 
and milk production through in vitro manipulations of 
germ cells, follicles, oocytes, and sperm. Studies on the 
kinetics or progression of oocyte maturation and further 
developmental competence of embryos are required, in 
addition to ovarian follicle gene expression. Although 
assisted reproductive techniques are still relatively rare 
and expensive, especially in third-world countries, their 
use has doubled over the past decade and thus necessitates 
further development.
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